Search results for "Critical temperature"

showing 5 items of 5 documents

A new intermediate intercalate in superconducting sodium-doped hafnium nitride chloride

2005

Anew phase has been observed during the sodiumintercalation of hafnium nitride chloride as intermediate between the host β-HfNCl and the already reported Na 0.29 HfNCl with Tc of 24 K; the new intermediate shows interlayer spacings ranging from 9.48 to 9.67 A°, corresponds to a second stage intercalate of HfNCl and is superconducting with a critical temperature of 20 K. Beltran Porter, Daniel, Daniel.Beltran@uv.es

Materials scienceSuperconducter ; Sudium-doped hafniem nitride ; Critical temperatureSodiumUNESCO::QUÍMICAInorganic chemistryIntercalation (chemistry)chemistry.chemical_elementNitrideChloride:QUÍMICA [UNESCO]CatalysisPhase (matter)Materials ChemistrymedicineCritical temperatureSudium-doped hafniem nitrideSuperconductivityUNESCO::QUÍMICA::Química inorgánicaDopingMetals and AlloysGeneral MedicineGeneral Chemistry:QUÍMICA::Química inorgánica [UNESCO]Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHafniumCrystallographySuperconducterchemistryCeramics and Compositesmedicine.drug
researchProduct

Disordered hyperuniformity in superconducting vortex lattices

2020

Particles occupying sites of a random lattice present density fluctuations at all length scales. It has been proposed that increasing interparticle interactions reduces long range density fluctuations, deviating from random behaviour. This leads to power laws in the structure factor and the number variance that can be used to characterize deviations from randomness which eventually lead to disordered hyperuniformity. It is not yet fully clear how to link density fluctuations with interactions in a disordered hyperuniform system. Interactions between superconducting vortices are very sensitive to vortex pinning, to the crystal structure of the superconductor and to the value of the magnetic …

Superconducting VorticesFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCurrent Carrying Capability01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)Physics::Fluid DynamicsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsCondensed Matter - Statistical MechanicsPinning StrengthSuperconductivityPhysicsStatistical Mechanics (cond-mat.stat-mech)Degree (graph theory)Condensed matter physicsDensity FluctuationCondensed Matter - SuperconductivityType II SuperconductorsFísicaCritical TemperaturesVortexStructure FactorsVortex ArrangementsSoft Condensed Matter (cond-mat.soft)Physical Review Research
researchProduct

Size dependence of the Josephson critical behavior in pyrolytic graphite TEM lamellae

2014

We have studied the transport characteristics of TEM lamellae of different widths obtained from a graphite sample with electrical contacts at the edges of the embedded interfaces. The temperature dependence of the resistance, as well as the current-voltage characteristics, are compatible with the existence of Josephson-coupled superconducting regions. The transition temperature at which the Josephson behavior sets in decreases with a decreasing interface width and vanishes for widths below 200 nm. This interface-size dependence provides an explanation for differences observed in the transport behavior of graphite-based samples with interfaces, and it appears to be related to the influence o…

SuperconductivityMaterials scienceCondensed matter physicsTransition temperatureMetals and AlloysCondensed Matter PhysicsElectrical contactsWeak localizationCondensed Matter::SuperconductivitySuperconducting critical temperatureMaterials ChemistryCeramics and CompositesGraphitePyrolytic carbonElectrical and Electronic EngineeringSize dependenceSuperconductor Science and Technology
researchProduct

Large 256-Pixel X-ray Transition-Edge Sensor Arrays With Mo/TiW/Cu Trilayers

2015

We describe the fabrication and electrical characterization of 256-pixel X-ray transition-edge sensor (TES) arrays intended for materials analysis applications. The processing is done on 6-in wafers, providing capabilities on a commercial scale. TES films were novel proximity coupled Mo/TiW/Cu trilayers, where the thin TiW layer in between aims to improve the stability of the devices by preventing unwanted effects such as Mo/Cu interdiffusion. The absorber elements were electrodeposited gold of thickness 2 μm. The single-pixel design discussed here is the so-called Corbino geometry. Most design goals were successfully met, such as the critical temperature, thermal time constant, and transit…

X-ray spectroscopyMaterials scienceFabricationta213superconducting devicesta114business.industryta221Time constantcritical temperatureslarge format arraysCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCharacterization (materials science)transition-edge sensorsNanosensorX-ray spectroscopyOptoelectronicsWaferElectrical and Electronic EngineeringTransition edge sensorbusinessLayer (electronics)materials analysisnanosensorsIEEE Transactions on Applied Superconductivity
researchProduct

Sensitivity of jet quenching to enhancement of the medium opacity near TC

2014

[Introduction] One of the main goals of the study of high transverse momentum ( P T ) observables in the context of ultrarelativistic heavy-ion collisions is the determination of properties of QCD matter. In particular, the transport coefficients ˆ q and ˆ e characterizing the interaction of the medium with a high p T parton are accessible via hard probes. However, a precision extraction of their temperature dependence from current data faces the problem that neither the space-time geometry of the evolving matter nor the link between thermodynamics and transport coefficients is unambiguously known. Thus, various conjectured scenarios exist for how thermodynamics and transport coefficients b…

jet quenchingcritical temperatureopacitymedium opacity
researchProduct